
Actas de los Talleres de JISBD
JISBD•
Talleres•

Volumen 4. Número 2
DSDM 2010. Desarrollo de Software Dirigido por Modelos[TOC]
Actas del VII Taller sobre Desarrollo de Software Dirigido por Modelos.

Valencia, España
7 de septiembre de 2010
Editor(es):
Orlando Avila-García
Open Canarias S.L. (España)
Jordi Cabot
INRIA-École des Mines de Nantes (Francia)
Javier Muñoz
Prodevelop S.L. (España)
Jose Raúl Romero
Universidad de Córdoba (España)
Antonio Vallecillo
Universidad de Málaga (España)

Tabla de Contenidos
Sesión 1: Transformaciones
Adaptation of transformations to metamodel changes
Páginas 1-9
Jokin García y Oscar Diaz
PDF
Automatización de la Selección de Transformaciones Alternativas Basada en Atributos de Calidad
Páginas 10-18
Javier Gonzalez-Huerta, Emilio Insfran y Silvia Abrahão
PDF
De flujos de navegación a Spring Web Flow. Un primer acercamiento a las transformaciones
verticales en MWACSL
Páginas 19-28
Antonia M. Reina-Quintero, Jesús Torres-Valderrama y Miguel Toro-Bonilla
PDF
Mejorando el nivel de automatización en el desarrollo dirigido por modelos de editores gráficos
Páginas 29-37
Alvaro Jimenez, Juan Manuel Vara, Veronica Andrea Bollati y Esperanza Marcos
PDF
Ingeniería inversa de eventos GUI en aplicaciones RAD mediante MDD
Páginas 38-46

Page 1 of 3Actas de Talleres de Ingeniería del Software y Bases de Datos

01/02/2011http://www.sistedes.es/TJISBD/Vol-4/No-2/index.html

Óscar Sánchez Ramón, Jesús Sánchez Cuadrado y Jesús García Molina
PDF
Sesión 2: Métodos
A Technological Framework to support Model Driven Method Engineering
Páginas 47-56
Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano, Javier Cano y Begoña Bonet
PDF
SOFIA: Smart Objects for Intelligent Applications – ADK
Páginas 57-59
Jesús Fernández Gómez-Pimpollo y Raúl Otaolea
PDF
A MDA Approach for Deriving Functional Testing Software for Validation of Active
Applications in RDB
Páginas 60-69
Harith Al-Jumaily, Dolores Cuadra y Paloma Martínez
PDF
Análisis de Comunicaciones como un enfoque de requisitos para el desarrollo dirigido por
modelos
Páginas 70-77
Marcela Ruiz, Sergio España, Arturo González y Óscar Pastor
PDF
Modernizing Legacy Systems through Runtime Models
Páginas 78-87
Ricardo Perez-Castillo, Barbara Weber, Ignacio García-Rodríguez de Guzmán y Mario Piattini
PDF
Decisiones arquitectónicas y tecnológicas como lineas de producto en el desarrollo dirigido por
modelos
Páginas 88-97
Jose García-alonso, Jose Javier Berrocal Olmeda y Juan Manuel Murillo
PDF
Sesión 3: Herramientas y Aplicaciones
EMF4CPP: a C++ Ecore Implementation
Páginas 98-106
Andrés Senac, Diego Sevilla y Gregorio Martínez
PDF
Generación de modelos de servicios en SoaML desde modelos de procesos de negocio en BPMN
con QVT
Páginas 107-116
Andrea Delgado, Francisco Ruiz, Ignacio García-Rodríguez de Guzmán y Mario Piattini
PDF
Variability issues in MARTE for SPL Model Analysis
Páginas 117-125
Lorea Belategui, Goiuria Sagardui, Joseba Andoni Agirre y Leire Etxeberria
PDF
Un motor de generación de código dirigido por modelos de base de datos, como punto de partida
para la implantación de una plataforma MDA en la administración balear
Páginas 126-135
Víctor García Pau y José A. Carsí
PDF
Definición y ejecución de métricas en el contexto de ADM
Páginas 136-145
Javier Luis Canovas, Belén Cruz y Jesus Garcia-Molina
PDF
Modelos weaving para trazabilidad de requisitos Web en A-OOH
Páginas 146-155

Page 2 of 3Actas de Talleres de Ingeniería del Software y Bases de Datos

01/02/2011http://www.sistedes.es/TJISBD/Vol-4/No-2/index.html

José Alfonso Aguilar Calderon, Irene Garrigos y Jose-Norberto Mazon
PDF

© 2010, SISTEDES.

Última actualización 14 de Julio de 2010.

Page 3 of 3Actas de Talleres de Ingeniería del Software y Bases de Datos

01/02/2011http://www.sistedes.es/TJISBD/Vol-4/No-2/index.html

Modernizing Legacy Systems through Runtime Models

Ricardo Pérez-Castillo
1
, Barbara Weber

2
, Ignacio García-Rodríguez de Guzmán

1
 and

Mario Piattini
1

1 Alarcos Research Group, University of Castilla-La Mancha
Paseo de la Universidad, 4 13071, Ciudad Real, Spain

{ricardo.pdelcastillo, ignacio.grodriguez, mario.piattini}@uclm.es
2 University of Innsbruck

Technikerstraße 21a, 6020 Innsbruck, Austria

barbara.weber@uibk.ac.at

Resumen

Software modernization advocates reengineering

processes for legacy information systems taking

model-driven development principles into

account. Modernization projects consider different

legacy software artifacts as knowledge sources

like, for example, source code, databases, user

interfaces. In addition, the knowledge necessary to

modernize a respective legacy system is extracted

by analyzing the legacy artifacts in a static way.

Unfortunately, there is a large amount of

knowledge that is only known during system

execution. Thus, this paper suggests a technique

based on dynamic analysis of source code to

obtain runtime models representing the system

execution events. The technique is contextualized

within MARBLE, a modernization framework to

obtain business processes form legacy information

systems. Firstly, the technique obtains a runtime

model that represents events related to the

execution of the business activities of the business

processes supported by the legacy system.

Secondly, a model transformation is proposed to

obtain a higher-level model from the runtime

model, which is represented according to an

extended event metamodel of the Knowledge-

Discovery Metamodel standard. As a

consequence, the runtime model can be integrated

and used in any modernization scenario in a

standardized manner.

1. Introduction

Most companies have existing information

systems which can be considered as legacy

systems, because the code in these systems was

written long time ago and in the meantime is

technologically obsolete. Legacy Information

Systems (LISs) are information systems that

significantly resist modification and evolution to

meet new and constantly changing business

requirements [19]. The continuous evolution

implies that the maintainability of LISs eventually

diminishes below acceptable limits requiring the

LISs to be modernized [15]. Modernization means

that the LIS is re-implemented using another,

better platform or an enhanced design, while the

business knowledge of the system is preserved

[11]. When a LIS evolves over time it embeds

much business knowledge. The preservation of

this knowledge during system modernization is a

very important challenge to be addressed for two

main reasons: (i) the embedded knowledge is not

present in any other artifact, and (ii) it must be

considered to align the new improved system with

the current business processes of the organization

[9].

 In the past, reengineering was the main tool

for addressing the evolutionary maintenance of

legacy systems preserving the business knowledge

[1]. However, reengineering is usually carried out

in an ad hoc manner, thus it fails when it is

applied to large and complex LISs [23]. Since

reengineering lacks formalization and

standardization it is very difficult to automate

reengineering for those large systems. Nowadays,

the typical reengineering concept has shifted to

so-called Architecture-Driven Modernization

(ADM) [16] as a solution to the formalization and

standardization problems. ADM advocates

carrying out reengineering processes following the

MDA (Model-Driven Architecture) standard [12],

i.e., it treats all the legacy software artifacts as

models and establishes model transformations

between the different MDA abstraction levels. In

addition, ADM defines the standard KDM

(Knowledge Discovery Metamodel), which has

also been recognized as standard ISO 19506 [10].

KDM provides a common repository structure that

makes it possible to exchange information about

existing software artifacts involved in LISs. KDM

can be compared with the Unified Modeling

Language (UML) standard; while UML is used to

generate new code in a top-down manner, ADM-

based processes involving KDM start from the

legacy source code and build a higher level model

in a bottom-up manner [13].

 There are several works in literature that

address the problem of preserving the embedded

business knowledge in software modernization

processes. Zou et al developed a MDA-based

framework for extracting business processes

through static analysis of source code based on a

set of heuristic rules [26]. Pérez-Castillo et al.

[20] propose MARBLE, an ADM framework that

uses the KDM standard to obtain business

processes from legacy source code. Source code,

however, is not the only legacy artifact considered

to recover business knowledge. Di

Francescomarino et al, for example, consider

graphical user interfaces of Web applications to

recover business processes [5]. Paradauskas et al.

[19], in turn, present a framework to recover

business knowledge through the inspection of the

data stored in databases. Ghose et al [7] propose a

set of text-based queries in source code and

documentation for extracting business knowledge.

In addition, Cai et al. [2] propose an approach that

combines the requirement reacquisition aided by

system users with static analysis. All these works

are mainly based on a static view of LISs, and

runtime models are often ignored to preserve the

business knowledge. However, since there exists

much valuable information that is only known

during system execution, there is a big potential

for exploiting runtime knowledge as well.

 This paper presents, within MARBLE, a

reverse engineering technique based on dynamic

analysis (combined with static analysis) of source

code to obtain runtime models. Firstly, the static

analysis syntactically analyzes the source code

and injects pieces of source code in a non-invasive

way in specific parts of the system. Secondly, the

dynamic analysis of the modified source code

makes it possible to write events during system

execution. The events are written according to the

MXML (Mining XML) metamodel [8], an XML

format used in the process mining field to obtain

event logs. The proposed technique is further

supported by specific information provided by

business experts and system analysts who know

the system.

 The runtime models represent the events

related to the underlying business processes that

occur during system execution, thus these models

provide another valuable source of knowledge to

understand what is actually going on in a LIS

from a dynamic perspective [24]. To facilitate the

use of runtime models for modernizing LISs, this

paper provides a model transformation between

levels L1 and L2 of the MARBLE framework to

represent the runtime models according to the

KDM standard. Due to the fact that KDM is

considered as the common modernization format

for representing any legacy artifacts, these models

can be used for any modernization framework.

 The remainder of this paper is organized as

follows. Section 2 briefly introduces MARBLE,

the modernization framework for which the

technique is proposed. Section 3 presents the

reverse engineering technique to obtain runtime

models, and Section 4 shows the model

transformation defined to represent runtime

models in KDM. Finally, Section 5 provides

conclusions and discusses future work.

2. MARBLE

MARBLE (Modernization Approach for

Recovering Business processes from LEgacy

systems) [20] is an ADM-based framework for

recovering business processes from legacy

systems and business knowledge preservation.

MARBLE is organized into four abstraction levels

(cf. Section 2.1) representing four different kinds

of artifacts needed to obtain the embedded

business processes. In addition, MARBLE

specifies three model transformations (cf. Section

2.2) to complete the path obtaining each kind of

model at a specific level from the previous one

(see Figure 1).

2.1. Abstraction levels defined in MARBLE

MARBLE defines four abstraction levels related

to four different kinds of models: L0 to L3. These

models are progressively refined from legacy

software artifacts in L0 until business process

models are obtained in L3 (see Figure 1).

 L0. Legacy information system. This level

represents the entire legacy system in the real

world, i.e. a set of interrelated software

artifacts like source code, user interfaces,

databases, documentation.

 L1. Software artifacts models. This level

contains a set of models representing one or

more software artifacts of the LIS. L1 models

can be seen as platform-specific models

(PSM) because they represent different views

or concerns of the system from a

technological point of view at a lower

abstraction level. As a consequence, L1

models must be represented according to

specific metamodels (e.g. a hypothetic L1

level could be formed by a code model

represented according to the Java metamodel

and a database model depicted according to

the SQL metamodel).

 L2. KDM model. This level integrates all

knowledge of the L1 models in a single

model, but at a higher abstraction level. This

model represents the entire LIS from a

platform-independent point of view at an

intermediate abstraction level (PIM). This

model is represented according to the

metamodel of the KDM standard. KDM

provides a common repository structure that

makes it possible to exchange information

about artifacts involved in the LIS.

 L3. Business process model. L3 is the top

level and corresponds to a business process

model that represents the recovered business

processes. This model can be seen as

computer-independent models (CIM), since it

depicts a business view of the system from a

computation independent viewpoint at the

highest abstraction level. MARBLE uses the

metamodel of the BPMN (Business Process

Modeling and Notation) standard [18] for

representing the business process model.

BPMN offers a well-known graphical notation

that is easily understood by both system

analysts and business experts.

Figure 1. Abstraction level organization and model transformation in MARBLE.

L0  L1
MML1
(Java MM)

L1  L2
MML2

(KDM)

L2  L3
MML3

(BPMN)

KDM

code{

}

Reverse engineering techniques

applied to different software
artifacts as static/dynamic

analysis, slicing, and so on

PSM to PIM model

transformation
implemented through QVT

QVT transformations based on

pattern matching and business
expert refinement

L0.
LIS

L1.
LIS models

L2.
KDM models

L3.
BP models

2.2. Model transformations in MARBLE

Besides different abstraction levels, MARBLE

defines three model transformations between the

four abstraction levels (see Figure 1).

 L0-to-L1 transformation. The first

transformation takes the different software

artifacts from the LIS (L0) and obtains a

specific model for each artifact (L1). This

transformation takes software artifacts into

account depending on the specific business

process recovery method based on MARBLE

(since MARBLE defines a generic

framework). So far, we consider a recovery

method using MARBLE, which considers

legacy source code as the unique software

artifact, since it is the artifact that embeds

most business knowledge [14]. In this case,

the L0-to-L1 transformation consists of the

static analysis of the source code files carried

out by means of a syntactical parser, which

generates a source code model according to

the proper metamodel.

 L1-to-L2 transformation. The second

transformation establishes the model

transformation between the code model (the

PSM model in L1) and the KDM code model

(the PIM model in L2). The KDM metamodel

is divided into different metamodel packages

organized into four abstraction layers. Each

package focuses on modeling a different

concern of the LIS. Currently, the KDM

model in L2 only considers the KDM

packages code and action that conform to the

program element layer. These packages are

enough to represent all concepts of the code

models of L1 at a higher abstraction level in

L2. This model transformation is formalized

by means of QVT (Query / Views /

Transformations) [17].

 L2-to-L3 transformation. The third

transformation aims to obtain a business

process model in L3 from the KDM model in

L2. This transformation consists of two steps:

(i) a model transformation that obtains a set of

preliminary business process models; and (ii)

an optional manual intervention by business

experts for refining the obtained business

processes to improve them. So far, the model

transformation of the first step uses a set of

business patterns [21], which define what

pieces of the source code (represented in the

KDM model) are transformed into well-

known structures of business processes. Then,

the pattern matching following those patterns

is implemented using QVT [22].

3. A Technique to Obtain Runtime models

Despite source code models are valuable models

at level L1 of MARBLE, there are specific,

relevant aspects of the source code (e.g. the

accurate execution order of the pieces of source

code, dead source code) which are lost if only

static analysis is used. Thus, dynamic analysis can

be used together with static analysis, additionally

considering knowledge related to system

execution, to obtain more meaningful business

knowledge. For this reason, we propose a

technique based on dynamic analysis to extract

runtime models at level L1 of MARBLE.

 The technique proposes the representation of

runtime models as event logs derived from the

system execution. Event logs are commonly used

in the process mining field as the input for several

mining algorithms to discover the business

process of an organization [3]. Thereby, event

logs save the list of business activities carried out

in an organization according to their business

processes. Usually, these event logs are obtained

from Process-Aware Information Systems (PAIS)

[6], i.e., process management systems (e.g.

Enterprise Resource Planning (ERP) or Customer

Relationship Management (CRM) systems). The

nature of these systems (in particular their

process-awareness) facilitates the registration of

events throughout process execution.

 The vast majority of LISs, however, are non

process-aware systems that also support the

business processes of organizations. Obtaining an

event log of a non process-aware system and

representing it in a model at level L1 of MARBLE

implies five key challenges:

 Challenge C1. Missing Process-Awareness.

Process definitions are implicitly described in

legacy code. A traditional LIS consists of a

control flow graph implicitly representing the

business process it supports. Thus, it is not

obvious which events (related to a specific

business activity) should be recorded in the

event log. To address this challenge, the

technique considers the “a callable unit / a

business activity” principle proposed by Zou

et al. [25].

 Challenge C2. Granularity. While some of

the callable units of LISs support the main

business functionalities, many callable units

are very small and do not directly support any

business activity (e.g. setter/getter methods,

printer methods, etc.).

 Challenge C3. Discarding Technical Code.

Legacy source code not only contains business

activities, but also technical aspects which

have to be discarded when the runtime model

is obtained.

 Challenge C4. Process Scope. Due to the fact

that traditional LISs do not explicitly define

processes, it has to be established when a

process starts and ends. Unfortunately, this

information is only known by business experts

and system analysts.

 Challenge C5. Process Instance Scope. It is

not obvious how business activities and the

multiples instances of a process should be

correlated. To solve this challenge the system

analyst’s knowledge is necessary.

Our technique for obtaining runtime models

representing an event log is based on a static

analysis of source code combined with a dynamic

analysis. Firstly, the static analysis examines the

legacy source code and modifies it by injecting

code for writing specific events during its

execution (cf. Section 3.1). After the static

analysis has been conducted, the modified source

code is dynamically analyzed at runtime by means

of the injected sentences (cf. Section 3.2). Figure 2

gives an overview of the technique, the tasks

carried out and their inputs/outputs.

3.1. Static analysis to modify the source code

The static analysis modifies the original source

code in a non invasive way to enable the

registration of events during system execution

(see Figure 2). To address the previously

introduced challenges, the static analysis is

supported with information provided by business

experts and system analysts. In Task 1, business

experts establish the start and end business

activities of the business processes to be

discovered (Challenge C4). In parallel, system

analysts examine in Task 2 the legacy source code

and filter the domain set of the directories, files or

specific callable units that support business

activities. This information is used to reduce

potential noise in the runtime model due to

technical source code (Challenge C3). Task 3

consists of the mapping by system analysts

between start/end business activities and the

callable units supporting them (Challenge C4). In

addition, system analysts establish through Task 4

the correlation data set for each callable unit

which is uniquely identifying a process instance

(Challenge C5). Each correlation data is mapped

to one or more parameters of each callable unit by

system analysts. Finally, Task 5 carries out the

syntactic analysis of the source code. A parser

analyzes and injects on the fly the sentences for

writing the event long during system execution.

1. Provide

Starting/Ending

Business

Activities

Starting/

Ending

Business

Activities

3. Map Starting/

Ending Activities

with callable units

2. Set Files/

Directories of

Problem Domain

Problem

Domain

Callable

Units

L0
Legacy

Source Code

Starting/

Ending

Callable

Units

4. Define

Correlation Set of

Attributes

5. Inject Trace

Senteces

(Static Analysis)

Correlation

Sets of

Callable

Units

Modified

Source

Code

L1
Runtime

Model

6. System

Execution

(Dynamic

Analysis)

Business

Expert

System

Analyst

MARBLE

Tool

Figure 2. The overall process carried out by means of the proposed technique.

 Task 5 is automated following the algorithm

presented in Figure 3. During the static analysis,

the source code is broken down into callable units

(Challenge C1), although the algorithm only

modifies the units of the domain set selected by

system analysts in Task 3 (Challenge C3). In

addition, fine-grained callable units (e.g., setter,

getter, constructor, toString and equals callable

units) are automatically discarded (Challenge C2).

After that, two sentences are injected at the

beginning and the end of each filtered callable

unit. The first sentence writes a start event related

to the business activity mapped to the callable

unit. This sentence is injected between the

signature and the body of the callable unit. The

second sentence writes an end event for the

respective business activity and is injected at the

end of the body. Both sentences have additional

parameters like the correlation data defined for

the unit and the information whether or not the

unit represents a start or end activity. This

additional information is used when the injected

sentences invoke the writeEvent function at

runtime, which writes the respective event into the

runtime model (cf. Section 3.2).

injectTraces (CallableUnits, DomainCallableUnits,
StartingCallableUnits, EndingCallableUnits)

 ModifiedCallableUnits  ɸ

 c‟  null

 For (c  CallableUnits)

 If (c  DomainCallableUnits and
 isFineGrainedUnit(c))

 If (c  StartingCallableUnits)

 position  „first‟

 Else If (c  EndingCallableUnits)

 position  „last‟
 Else

 position  “intermediate”

 sentence1  “writeEvent (c.name, „start‟,
 position, c.correlationSet)”

 sentence2  “writeEvent (c.name, „complete‟,
 position, c.correlationSet)”

 c‟.signature  c.signature

 c‟.body  sentence1 + c.body + sentence2

 ModifiedCallableUnits 

 ModifiedCallableUnits  {c‟}
 Else

 ModifiedCallableUnits 

 ModifiedCallableUnits  {c}
 Return ModifiedCallableUnits

Figure 3. Algorithm to inject trace sentences by
means of static analysis.

3.2. Dynamic analysis to obtain runtime models

After having modified the source code through

static analysis it is released to production. The

new code makes it possible to obtain runtime

models representing the event log of the LIS.

These runtime models are represented in

MARBLE according to a metamodel based on the

MXML format [8], which is used in the process

mining field.

 Figure 4 shows the MXML metamodel, which

provides the WorkflowLog metaclass to represent

an event log as a set of instances of the Process

metaclass. Each Process element contains several

ProcessInstances, which have a sequence of

AuditTrailEntry elements. Each AuditTrailEntry

element represents an event and consists of four

main elements: (i) the WorkflowModelElement

that represents the executed activity; (ii) the

EventType that represents if the activity is being

executed (start) or was completed (complete); (iii)

the Originator that provides the user who starts or

completes the activity; and finally (iv) the

Timestamp that records the date and time of the

event. Moreover, all these elements can have a

Data element including additional information

endorsed into Attribute elements.

 Dynamic analysis is automatically carried out

during system execution. Thus, when the control

flow of the LIS reaches an injected sentence, a

new event is added to the event log. The events

are written by means of the writeEvent function.

Before adding the new event representing a

business activity to the runtime model, it is

necessary to find out the correct process and

process instance where the event must be added.

The adequate process and process instance are

located by means of Xpath expressions [4]. If the

process is null, then a new process is created. In

addition, these expressions take the correlation

data into account to establish the correct process

instance. The attributes that contain the

correlation data were already established during

static analysis, however, their values are only

known during system execution.

Figure 4. MXML Metamodel used to represent runtime models in MARBLE.

Figure 5. Event metamodel package in the KDM standard

 Finally, when the writeEvent function has

determined the correct process instance, it adds

the event to that particular instance. The event,

represented as an AuditTrailEntry element in the

runtime model according to the MXML

metamodel, is created using: (i) the name of the

executed callable unit represents the

WorkflowModelElement; (ii) the event type that is

also a parameter of this function; (iii) the user of

the system that executed the callable unit (or the

user of the session if the system is a web

application), which represents the originator

element; and finally (iv) the system date and time

when the callable unit was executed to represent

the timestamp element.

4. Runtime Models in KDM

This paper also provides the model transformation

between levels L1 and L2 of MARBLE, in order

to represent the runtime models according to the

KDM standard. As a consequence, this runtime

model can be used in any software modernization

context.

 Specifically, the runtime models are

represented using the event metamodel package of

the runtime resource layer of the KDM

metamodel [10]. Figure 5 shows the event

metamodel package as well as other metaclasses

of other KDM packages used in the runtime

models. The EventModel metaclass represents the

runtime model, which contains a set of

EventResource and EventAction elements. An

EventResource element can be specialized into a

State element, a Transition element, an Event

element, or it can even be a container of other

EventResources. The Event element is used to

model the AuditTrailEntries of the runtime model

represented according to the MXML metamodel

in L1. The feature name represents the

WorkflowModelElement, and the feature kind

represents (with a ‘start’ or ‘complete’ value) the

EventType.

 The transformation is formalized by means of

QVT-Relations (the declarative language of the

QVT standard). A relation transforms a MXML

model in L1into an instance of the EventModel

metaclass. This relation calls to the relation

„auditTrailEntry2Event‟ that transforms each

AuditTrailEntry in L1 into an Event in L2 (see

Figure 6).

The event metamodel package of KDM makes

it impossible to represent the process and process

instance where the event belongs as well as the

originator and timestamp of the event (see Figure

5). For this reason, the proposal uses the default

extension mechanism of the KDM metamodel: the

extension families. The EventModel includes an

ExtensionFamily element (see Figure 6), which

defines four Stereotype elements: <process>,

<processInstance>, <originator> and

<timestamp>. Each stereotype has a

TagDefinition element that is used by stereotyped

elements of the runtime model to put the specific

value by means of a respective TaggedValue

element.

Therefore, the problematic elements are

represented in KDM as follows: (i) A process is

represented as an EventResource element

annotated with the <process> stereotype and

containing a TaggedValue with the name of the

process. (ii) A process instance is also represented

as an EventResource element, which is nested

within another EventResource that represents a

process. This EventResource is annotated with the

<processInstance> stereotype and contains a

TaggedValue with the process instance

identification. (iii) The originator is represented as

a TaggedValue associated to an Event stereotyped

as <originator>. (iv) The timestamp is also

represented with a TaggedValue in an Event

annotated with the <timestamp> stereotype.

Figure 6. The QVT relation ‘auditTrailEntry2Event’ to transform runtime models in L1 to KDM models in L2.

auditTrailEntry2Event
MXML KDM Event

eventModel:eventModel p : Process

name=xProcessName

<<checkonly>>

Where

vP:TaggedValue

value=xProcessName

MXML pi : ProcessInstance

name=xProcessInstanceName

When

ate:AuditTrailEntry

<<checkonly>>

e : WorkflowModelElement

name = xEventName

MXML

process : EventResource

name=’Process’

timestamp

type : EventType

type = xEventType

o : Orignitaror

name = xOriginatorName

t : Timestamp

name = xDate

<<checkonly>>

originator

workflowModelElement

eventType

runtimeExtension : ExtensionFamily

stP : Stereotype

tP : TagDefinition

tag =’process’

stPI : Stereotype

tPI : TagDefinition

tag =’processInstance’

sO : Stereotype

tP : TagDefinition

tag =’originator

sT : Stereotype

tT : TagDefinition

tag =’timestamp’

tP : TagDefinition

tag=’process’

vPI:TaggedValue

value=xProcessInstanceName

tPI : TagDefinition

tag=’processInstance’

processInstance :
EventResource

name=’ProcessInstance’

tO : TagDefinition

tag =’originator’

tT : TagDefinition

tag =’timestamp’

to : Event

name=queryNextEvent

vO : TaggedValue

value =xOriginatorName

vT : TagDefinition

value=xDate
nextEvent :

EventRelationship

implementation :
CodeElement

name=xEventName

event : Event

name=xEventName
kind=xEventType

from : Event

name =xEventName

<<enforce>>

 Despite the fact that the order of the events

can be derived from the timestamp information,

the relation „auditTrailEntry2Event‟ (see Figure 6)

establishes at level L2 the same sequence of

events register in the model at level L1. This order

is represented as an EventRelationship element

within each Event representing a reference to the

next Event element.

Finally, the relation „auditTrailEntry2Event‟

(see Figure 6) maps each Event to a CodeElement

of the KDM code model. The resource runtime

layer of the event package is above the program

element layer (that contains the code and action

metamodel packages), thus the elements of a

runtime model can be mapped to the callable units

represented in the KDM code model. As a

consequence, the feature location is also improved

throughout the modernization of a LIS.

5. Conclusions and Future Work

Software modernization projects typically take

several software artifacts as source of knowledge

into account like, for example, source code,

databases, user interfaces. Thereby, modernization

projects often recover knowledge from a static

point of view. However, a dynamic approach

allows modernization projects to extract more

meaningful knowledge, which cannot be

recovered analyzing artifacts in a static way only.

For this reason, this paper proposes a technique,

within a specific modernization framework (i.e.,

MARBLE), to obtain runtime models by means of

dynamic analysis of source code.

 Firstly, the proposed technique statically

analyzes the legacy source code, and modifies it

by injecting special sentences that make it

possible to register execution events. Secondly,

during system execution, the modified code is

dynamically analyzed through the injected

sentences and a runtime model is written at level

L1of MARBLE. The obtained runtime models

represent an event log according to the MXML

metamodel, and depict a sequence of executed

events related to business activities of the business

processes embedded in the source code.

Moreover, the runtime model is transformed into a

runtime model represented at level L2 of

MARBLE according to the KDM metamodel. For

this purpose, an extension of the event package of

the KDM metamodel is proposed as well as a

model transformations implemented by means of

QVT-Relation. Due to the fact that the runtime

model is represented following the KDM

standard, the proposed technique can be used in

other modernization frameworks based on ADM

as MARBLE.

 The future work will focus on the validation

of the proposal by means of a case study involving

a real-life LIS in a healthcare context. Another

research direction in the future will be the use of

the runtime models combined with other models

of KDM as the code and data model in order to

obtain more meaningful business process models

at level L3 of MARBLE.

Acknowledgement

This work was supported by the FPU Spanish

Program; by the R+D projects funded by JCCM:

ALTAMIRA (PII2I09-0106-2463), INGENIO

(PAC08-0154-9262) and PRALIN (PAC08-0121-

1374); and the PEGASO/MAGO project

(TIN2009-13718-C02-01) funded by MICINN

and FEDER. In addition, this work was supported

by the Quality Engineering group at the

University of Innsbruck.

References

[1] Bianchi, A., D. Caivano, V. Marengo, and G.

Visaggio, "Iterative Reengineering of Legacy

Systems". IEEE Trans. Softw. Eng., 2003.

29(3): p. 225-241.

[2] Cai, Z., X. Yang, and W. Wang. "Business

Process Recovery for System Maintenance -

An Empirical Approach". in 25 th

International Conference on Software

Maintenance (ICSM'09). 2009. Edmonton,

Canada: IEEE CS p. 399-402.

[3] Castellanos, M., K.A.d. Medeiros, J.

Mendling, B. Weber, and A.J.M.M. Weitjers,

Business Process Intelligence, in Handbook of

Research on Business Process Modeling, J. J.

Cardoso and W.M.P. van der Aalst, Editors.

2009, Idea Group Inc. p. 456-480.

[4] Clark, J. and S. DeRose, XML Path Language

(XPath). 1999, World Wide Web Consortium

(W3C).

[5] Di Francescomarino, C., A. Marchetto, and P.

Tonella. "Reverse Engineering of Business

Processes exposed as Web Applications". in

13th European Conference on Software

Maintenance and Reengineering (CSMR'09).

2009. Fraunhofer IESE, Kaiserslautern,

Germany: IEEE Computer Society p. 139-

148.

[6] Dumas, M., W. van der Aalst, and A. Ter

Hofstede, Process-aware information systems:

bridging people and software through process

technology. 2005: John Wiley & Sons, Inc.

[7] Ghose, A., G. Koliadis, and A. Chueng.

"Process Discovery from Model and Text

Artefacts". in IEEE Congress on Services

(Services'07). 2007 p. 167-174.

[8] Günther, C.W. and W.M.P. van der Aalst, "A

Generic Import Framework for Process Event

Logs". Business Process Intelligence

Workshop (BPI'06), 2007. LNCS 4103: p. 81-

92.

[9] Heuvel, W.-J.v.d., Aligning Modern Business

Processes and Legacy Systems: A

Component-Based Perspective (Cooperative

Information Systems). 2006: The MIT Press.

[10] ISO/IEC, ISO/IEC DIS 19506. Knowledge

Discovery Meta-model (KDM), v1.1

(Architecture-Driven Modernization).

http://www.iso.org/iso/catalogue_detail.htm?c

snumber=32625. 2009, ISO/IEC. p. 302.

[11] Khusidman, V. and W. Ulrich, Architecture-

Driven Modernization: Transforming the

Enterprise. DRAFT V.5.

http://www.omg.org/docs/admtf/07-12-01.pdf.

2007, OMG. p. 7.

[12] Miller, J. and J. Mukerji, MDA Guide

Version 1.0.1. www.omg.org/docs/omg/03-

06-01.pdf 2003: OMG.

[13] Moyer, B. (2009) Software Archeology.

Modernizing Old Systems. Embedded

Technology Journal,

http://adm.omg.org/docs/Software_Archeolog

y_4-Mar-2009.pdf

[14] Müller, H.A., J.H. Jahnke, D.B. Smith, M.-A.

Storey, S.R. Tilley, and K. Wong. "Reverse

engineering: a roadmap". in Proceedings of

the Conference on The Future of Software

Engineering. 2000. Limerick, Ireland: ACM.

[15] Newcomb, P. "Architecture-Driven

Modernization (ADM)". in Proceedings of the

12th Working Conference on Reverse

Engineering. 2005: IEEE Computer Society.

[16] OMG. ADM Task Force by OMG. 2007

9/06/2009 [cited 2008 15/06/2009]; Available

from: http://www.omg.org/.

[17] OMG, QVT. Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification.

2008, OMG.

[18] OMG, Business Process Model and Notation

(BPMN) 2.0. 2009, Object Management

Group. p. 496.

[19] Paradauskas, B. and A. Laurikaitis, "Business

Knowledge Extraction from Legacy

Information Systems". Journal of Information

Technology and Control, 2006. 35(3): p. 214-

221.

[20] Pérez-Castillo, R., I. García-Rodríguez de

Guzmán, O. Ávila-García, and M. Piattini.

"MARBLE: A Modernization Approach for

Recovering Business Processes from Legacy

Systems". in International Workshop on

Reverse Engineering Models from Software

Artifacts (REM'09). 2009. Lille, France:

Simula Research Laboratory Reports p. 17-20.

[21] Pérez-Castillo, R., I. García-Rodríguez de

Guzmán, O. Ávila-García, and M. Piattini.

"Business Process Patterns for Software

Archeology". in 25th Annual ACM

Symposium on Applied Computing (SAC'10).

2010. Sierre, Switzerland: ACM p. 165-166.

[22] Pérez-Castillo, R., I. García-Rodríguez de

Guzmán, and M. Piattini. "Implementing

Business Process Recovery Patterns through

QVT Transformations". in International

Conference on Model Transformation

(ICMT'10). 2010. Málaga, Spain: Springer-

Verlag p. In Press.

[23] Sneed, H.M., Estimating the Costs of a

Reengineering Project. Proceedings of the

12th Working Conference on Reverse

Engineering. 2005: IEEE Computer Society.

[24] van der Aalst, W., H. Reijers, and A.

Weijters, "Business Process Mining: An

Industrial Application.". Information Systems,

2007. 32(5): p. 713-732.

[25] Zou, Y. and M. Hung. "An Approach for

Extracting Workflows from E-Commerce

Applications". in Proceedings of the

Fourteenth International Conference on

Program Comprehension. 2006: IEEE

Computer Society p. 127-136.

[26] Zou, Y., T.C. Lau, K. Kontogiannis, T. Tong,

and R. McKegney. "Model-Driven Business

Process Recovery". in Proceedings of the 11th

Working Conference on Reverse Engineering

(WCRE 2004). 2004: IEEE Computer Society

p. 224-233.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=32625
http://www.iso.org/iso/catalogue_detail.htm?csnumber=32625
http://www.omg.org/docs/admtf/07-12-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://adm.omg.org/docs/Software_Archeology_4-Mar-2009.pdf
http://adm.omg.org/docs/Software_Archeology_4-Mar-2009.pdf
http://www.omg.org/

